粗硬黑大欧美aaaa片视频_国产精品视频区1_日韩综合精品视频_天堂网www在线资源_日韩精品中文字幕视频_无码爽大片日本无码AAA特黄

食品伙伴網(wǎng)服務(wù)號(hào)
 
 
當(dāng)前位置: 首頁 » 專業(yè)英語 » 英語短文 » 正文

DNA能告訴我們什么?科學(xué)家的賭局

放大字體  縮小字體 發(fā)布日期:2009-07-16
核心提示:From Newton to Hawking, scientists love wagers. Now Lewis Wolpert has bet Rupert Sheldrake a case of fine port that: By 1 May 2029, given the genome of a fertilised egg of an animal or plant, we will be able to predict in at least one case all the d

    From Newton to Hawking, scientists love wagers. Now Lewis Wolpert has bet Rupert Sheldrake a case of fine port that: "By 1 May 2029, given the genome of a fertilised egg of an animal or plant, we will be able to predict in at least one case all the details of the organism that develops from it, including any abnormalities." If the outcome isn't obvious, then the Royal Society will be asked to adjudicate.

    Lewis Wolpert

    I HAVE entered into this wager with Rupert Sheldrake because of my interest in the details of how embryos develop, and how our understanding of this process will progress. In my latest book, How We Live and Why We Die, I suggest that it will one day be possible to predict from an embryo's genome how it will develop, and I believe it is possible for this to happen in the next 20 years.

    I am, in fact, being a little over-keen because 40 years is a more likely time frame for such a breakthrough. Cells and embryos are extremely complicated: for their size, embryonic cells are the most complex structures in the universe.

    Animals develop from a single cell, a fertilised egg, which divides to produce cells that will form the embryo. How that egg develops into an embryo and newborn animal is controlled by genes in the chromosomes. These genes are passive: they do nothing, just provide the code for proteins. It is proteins that determine how cells behave. While the DNA in every cell contains the code for all the proteins in all the cells, it is the particular proteins produced in particular cells that determine how those cells behave.

    Every cell of the embryo contains many copies of several thousand different proteins. These proteins have a plethora of functions: acting as enzymes to break down and build other molecules, providing structures for the cell, interacting with each other, and many more. The complexity of the interactions between millions of molecules is amazing.

    As the proteins determine how the cells behave, it is their activity that causes the embryo to develop. Underlying this process, though, are the genes, as they control which proteins are made - including some proteins that activate specific genes. It is essential that there is this control over which cells continue to divide, and of mechanisms to pattern the embryo so that different cells develop into different structures, such as the brain or limbs.

    There is a huge incentive to understand these processes and so be able to work out the development of an embryo given only its genome. This ability could pave the way for regenerative medicine by allowing scientists to program stem cells to become structures that could replace damaged parts of the body.

    To win the bet, we will have to be able to predict the behaviour of almost all the cells in the embryo. In a small worm, say the nematode Caenorhabditis elegans, there are 959 cells, making it the ideal model to solve this problem. It is a major challenge, but advances in cell biology, systems biology and computing will take us there.

    Rupert Sheldrake

    LEWIS WOLPERT's faith in the predictive power of the genome is misplaced. Genes enable organisms to make proteins, but do not contain programs or blueprints, or explain the development of embryos.

    The problems begin with proteins. Genes code for the linear sequences of amino acids in proteins, which then fold up into complex three-dimensional forms. Wolpert's wager presupposes that the folding of proteins can be computed from first principles, given the sequence of amino acids specified by the genes. So far, this has proved impossible. As in all bottom-up calculations, there is a combinatorial explosion. For example, by random folding, the amino-acid chain of the enzyme ribonuclease, a small protein, could adopt more than 1040 different shapes, which would take billions of years to explore. In fact, it folds into its habitual form in 2 minutes.

    Even if we could solve protein-folding, the next stage would be to predict the structure of cells on the basis of the interactions of millions of proteins and other molecules. This would unleash a far worse combinatorial explosion, with more possible arrangements than all the atoms in the universe.

    Random molecular permutations simply cannot explain how organisms work. Instead, cells, tissues and organs develop in a modular manner, shaped by morphogenetic fields, first recognised by developmental biologists in the 1920s. Wolpert himself acknowledges the importance of such fields. Among biologists, he is best known for "positional information", by which cells "know" where they are within the field of a developing organ, such as a limb. But he believes morphogenetic fields can be reduced to standard chemistry and physics. I disagree. I believe these fields have organizing abilities, or systems properties, that involve new scientific principles.

    The Human Genome Project has itself set back the hopes it engendered. First, our genome contains only between 20,000 and 25,000 genes, far fewer than the 100,000 expected. In contrast, sea urchins have about 26,000, and rice plants 38,000. Moreover, our genome differs very little from the chimpanzee's genome, the sequencing of which was completed in 2005. As Svante P??bo, director of the Chimpanzee Genome Project, commented: "We cannot see in this why we are so different from chimpanzees."

    Second, in practice, the predictive value of human genomes turns out to be low. Everyone knows tall parents tend to have tall children, and recent studies on the genomes of 30,000 people identified about 50 genes associated with being tall or short. Yet together these genes accounted for only about 5 per cent of the inheritance of height. This is not the only example of "missing heritability". Steve Jones, professor of genetics at University College London says that "hubris has been replaced with concern", and he suggests the present approach is "throwing good money after bad".

    Wolpert is not alone in believing in the predictive value of the genome. Governments, venture capitalists and medical charities have bet and are still betting billions of dollars on it. More than a case of fine port is at stake.

    A brief history of wagers

    Scientific wagers date back to Greece in the 5th or 6th century BC and were often a rhetorical device for thinking about a subject. In their current form, they can also help stimulate fresh thinking.

    One of the famous wagers of the more modern era was announced by Christopher Wren in 1684. He would give a book worth 40 shillings to anyone who could deduce Kepler's laws from the inverse-square law. Isaac Newton took this seriously and his deliberations eventually became his Principia - but too late to claim the prize.

    In 1959, physicist Richard Feynman bet $1000 that it was impossible to build a motor no bigger than 1/64 of an inch on each side. He lost: electrical engineer Bill McLellan succeeded. Feynman was said to be disappointed because he hoped his bet would stimulate new technology, but McLellan's motor used existing techniques.

    從牛頓到霍金,科學(xué)家們都愛打賭。如今Lewis Wolpert跟Rupert Sheldrake打賭說:"到2029年5月1日,只需一顆受精卵,無論動(dòng)物還是植物,我們就能預(yù)測(cè)出至少在一種情況下這顆受精卵成長(zhǎng)過程的全部細(xì)節(jié),包括所有異常情況。"如果結(jié)果并不明顯,Lewis Wolpert就會(huì)接受英國(guó)皇家學(xué)會(huì)的審判。

    Lewis Wolpert的獨(dú)白:

    之所以跟Rupert Sheldrake打賭是因?yàn)槲覍?duì)胚胎成長(zhǎng)的過程很感興趣,并且希望能對(duì)其有更深入的了解。在我最近出版的《How We Live and Why We Die》中,我認(rèn)為總有一天人們能從胚胎的基因中預(yù)測(cè)出它成長(zhǎng)的過程,我也相信這一設(shè)想會(huì)在未來的20年內(nèi)實(shí)現(xiàn)。

    實(shí)際上,我可能過于心急了,40年時(shí)間對(duì)實(shí)現(xiàn)這一突破似乎更有可能。因?yàn)榧?xì)胞和胚胎結(jié)構(gòu)極其復(fù)雜:?jiǎn)螐某叽缟蟻碇v,胚胎干細(xì)胞是宇宙中最復(fù)雜的結(jié)構(gòu)。

    動(dòng)物們從一顆受精卵衍化而來,受精卵產(chǎn)生組成胚胎的細(xì)胞。染色體中的基因控制著卵子變成胚胎和新生動(dòng)物的過程。但是這些基因十分懶惰:它們什么也不做,只為蛋白質(zhì)提供編碼。因此是蛋白質(zhì)決定了細(xì)胞的行為。而細(xì)胞中的DNA包含所有細(xì)胞蛋白質(zhì)的編碼,只有個(gè)別細(xì)胞產(chǎn)生的特殊蛋白質(zhì)才決定細(xì)胞行為。

    胚胎中的每一個(gè)細(xì)胞都包含上千種不同蛋白質(zhì)的復(fù)制品。這些蛋白質(zhì)功能過剩:它們會(huì)像酶一樣分解物質(zhì),或形成其它分子,或?yàn)榧?xì)胞賦予結(jié)構(gòu),有些還會(huì)與其它蛋白質(zhì)進(jìn)行互動(dòng)等等。數(shù)百萬蛋白質(zhì)分子同時(shí)進(jìn)行活動(dòng)的復(fù)雜狀態(tài)令人吃驚。

    蛋白質(zhì)決定細(xì)胞行為,蛋白質(zhì)的活動(dòng)促使胚胎發(fā)展。但是這一過程的始作俑者是基因,包括某些需要蛋白質(zhì)激活的基因,因?yàn)樗鼈兛刂频鞍踪|(zhì)的形成。基因的控制必不可少,只有它們決定哪些細(xì)胞繼續(xù),這樣不同的細(xì)胞才會(huì)成長(zhǎng)為不同的結(jié)構(gòu),如大腦和四肢。

    只有了解基因,才能從一顆受精卵中判斷胚胎的發(fā)展。科學(xué)家們還可以將研究結(jié)果應(yīng)用到再生醫(yī)學(xué)上去,用干細(xì)胞培育器官來替換身體內(nèi)的壞死部分。

    要想贏得這場(chǎng)戰(zhàn)斗的勝利,我們必須能夠預(yù)測(cè)胚胎中所有細(xì)胞的行為。以某種小型土壤線蟲為例,它有959個(gè)細(xì)胞,是解決這一問題的理想模型。很顯然,這是一項(xiàng)巨大的挑戰(zhàn),但是細(xì)胞生物學(xué),系統(tǒng)生物學(xué)和計(jì)算機(jī)技術(shù)的發(fā)展會(huì)幫助我們將夢(mèng)想變成現(xiàn)實(shí)。

    Rupert Sheldrake的獨(dú)白:

    Lewis Wolpert竟然寄希望于基因真是異想天開。基因促使組織制造蛋白質(zhì)這的確沒錯(cuò),但是它們既沒有計(jì)劃,也不能解釋胚胎們的發(fā)展。

    一切問題的根源在于蛋白質(zhì)。基因控制蛋白質(zhì)中線性氨基酸類的編碼,這些氨基酸再折疊形成復(fù)雜的立體結(jié)構(gòu)。Wolpert認(rèn)為只需特定基因的氨基酸就能判斷蛋白質(zhì)折疊的結(jié)果。迄今為止,這是根本不可能的。因?yàn)榈鞍踪|(zhì)折疊的可能性數(shù)不勝數(shù)。例如,通過隨機(jī)折疊,核糖核酸酶(一種小型蛋白質(zhì))的氨基酸鏈能形成超過1040種不同的結(jié)構(gòu),單這一種蛋白質(zhì)就需要數(shù)億年的時(shí)間來探索。而實(shí)際上,氨基酸鏈折疊的過程只需兩分鐘。

    即使我們能抓住蛋白質(zhì)折疊的規(guī)律,下一步就是通過分析數(shù)百萬蛋白質(zhì)和其它分子之間的相互作用,來預(yù)測(cè)細(xì)胞的結(jié)構(gòu)。這勢(shì)必會(huì)引發(fā)另一次更大規(guī)模的信息爆炸,因?yàn)檫@一過程產(chǎn)生的可能性比宇宙中所有的原子數(shù)量還要多。

    僅憑分析隨機(jī)分子排列的規(guī)律不可能解釋器官的形成。相反,早在20世紀(jì)20年代發(fā)育學(xué)家們就認(rèn)識(shí)到細(xì)胞,組織和器官是按照特定的模式而生長(zhǎng),這種模式是由形態(tài)發(fā)生場(chǎng)所而決定的。Wolpert知道這些場(chǎng)所的重要性。在生物學(xué)家之中,他以知曉"位置信息"而聞名,位置信息就是細(xì)胞"知道"其在生長(zhǎng)器官中的位置,比如四肢。但是他認(rèn)為形態(tài)發(fā)生場(chǎng)所會(huì)被周圍的化學(xué)或物理作用而削弱。這一點(diǎn)我不認(rèn)同。我相信形態(tài)發(fā)生場(chǎng)所具有組織能力或者系統(tǒng)功能,對(duì)其的研究將會(huì)發(fā)現(xiàn)新的科學(xué)原理。

    人類基因組計(jì)劃就證明了這一預(yù)測(cè)很不現(xiàn)實(shí)。首先,我們的基因組只包含2萬至2萬5千個(gè)基因,與預(yù)期的10萬相去甚遠(yuǎn)。相比較,海膽有2萬6千個(gè)基因,而谷類植物的基因有3萬8千個(gè)。此外,據(jù)2005年的研究顯示人類與黑猩猩基因差別很小。黑猩猩基因組計(jì)劃的負(fù)責(zé)人Svante P??bo曾說過:"我們不能從黑猩猩的基因組中判斷出為什么我們與黑猩猩不一樣。"

    其次,實(shí)際上,人類基因組的預(yù)測(cè)價(jià)值很低。每個(gè)人都知道高個(gè)家長(zhǎng)容易有高個(gè)孩子,而最近對(duì)3萬人的基因組進(jìn)行鑒定后發(fā)現(xiàn)只有50個(gè)基因與人的高矮有關(guān)。這些基因加在一起只對(duì)身高遺傳起到5%的作用。這并不是"失傳現(xiàn)象"的唯一例證。倫敦大學(xué)學(xué)院的遺傳學(xué)教授Steve Jones說過:"驕傲已蒙蔽了憂慮的雙眼。"他認(rèn)為目前的研究方向是"賠了夫人又折兵".

    Wolpert并不是唯一一個(gè)堅(jiān)信人類基因組預(yù)測(cè)價(jià)值的人。政府部門,資本家們以及慈善機(jī)構(gòu)都在上面下注,一擲千金。這樣做的結(jié)果很危險(xiǎn)。

    科學(xué)家打賭簡(jiǎn)史

    科學(xué)家打賭的歷史可以追溯到公元前5、6世紀(jì)的希臘,那時(shí)打賭是一種用來刺激人們思考的手段。就現(xiàn)在來看,打賭仍舊可以激發(fā)人們的靈感。

    現(xiàn)代最著名的打賭發(fā)生在1684年。Christopher Wren打賭如果有人能用平方反比定律推論開普勒定律,他就會(huì)將一本價(jià)值40先令的書送給這個(gè)人。Isaac Newton經(jīng)過深思熟慮最終形成了他的著名理論,但對(duì)于領(lǐng)取獎(jiǎng)賞為時(shí)已晚。

    1959年,物理學(xué)家Richard Feynman打賭1000美元,預(yù)言不可能有人制造出邊長(zhǎng)不超過六十四分之一英尺的馬達(dá)。最終電機(jī)工程師Bill McLellan抱得美元?dú)w。Feynman稱這一結(jié)果令他很失望,他本希望這次能刺激人們進(jìn)行技術(shù)創(chuàng)新,但是McLellan制造的馬達(dá)仍使用現(xiàn)有技術(shù)。

    1975年,Stephen Hawking與同伴宇宙學(xué)家Kip Thorne曾打賭天鵝座X-1是否含有黑洞,賭注是輸家為贏家訂閱雜志。結(jié)果Hawking認(rèn)輸,也恰好從這時(shí)起Hawking開始花費(fèi)大量時(shí)間研究黑洞。

更多翻譯詳細(xì)信息請(qǐng)點(diǎn)擊:http://www.trans1.cn
 
關(guān)鍵詞: DNA 科學(xué)家 賭局
[ 網(wǎng)刊訂閱 ]  [ 專業(yè)英語搜索 ]  [ ]  [ 告訴好友 ]  [ 打印本文 ]  [ 關(guān)閉窗口 ] [ 返回頂部 ]
分享:

 

 
推薦圖文
推薦專業(yè)英語
點(diǎn)擊排行
 
 
Processed in 0.175 second(s), 17 queries, Memory 0.92 M
主站蜘蛛池模板: 各处沟厕大尺度偷拍女厕嘘嘘|亚洲一区二区不卡视频|亚洲淫片|又黄又爽又色成人网站|999这里只有精品|免费国产乱理伦片在线观看 | 中国一级毛片在线视频|99在线观看免费视频|亚洲九九热|www.精品国产|亚洲www久久久|欧美白浆视频 | 国产精品久久久久久久小唯西川|日韩免费高清视频|亚洲另类自拍|黑森林精品=aV导航|日韩精品专区=av无码|高清精品久久 | 精品成人免费一区二区三区|亚洲专区在线|欧美裸体xxxx极品少妇软件|欧洲vi一区二区三区|免费激情网站|久久久青 | 婷婷久久综合九色综合97最多收藏|国产一级毛片久久|91精品二区|思思99精品视频在线观看|国产福利第一视频在线播放|人人澡超碰碰 | 国产精品高潮呻吟久久久久久|91青娱乐在线视频|成年男人露jiji网站自慰|亚洲区免费|91精品在线一区二区|91免费高清 | 日本三区|又大又黄又粗高潮免费|国产成年女人免费视频播放=a|国产美女视频国产视视频|欧美成综合|国产成人=av一区二区三区 | 汉服女装齐胸襦裙被c到喷水|h=aodi=aoc=ao这里只有精品视频|国产精华=av午夜在线观看免费|久久美女免费视频|www.91免费视频|#NAME? | h黄视频在线观看|日韩精品=a=a=a|高h喷水荡肉爽文np肉色学男男|99精品中文字幕|C=aOPORN成人免费公开|久热久爱 | 国产精品天干天干综合网|亚洲精品视频免费看|日本内射精品一区二区视频|亚洲日韩=aⅴ在线视频|美女1区2区3区|999久久 | 国产精品成人v=a在线观看|久久网中文字幕|国产精品2区|色费色情人成视频|国产精品一区二区丝瓜|国产亚洲精品自在久久77 | 阿v天堂2018在无码免费|男人添女人下身视频网站|日韩精品久久久久久免费|日韩爱爱免费视频|视频在线精品一区|成人欧美一区二区三区视频xxx | 夜夜躁狠狠躁夜躁2021|欧洲成人在线观看|中国少妇饥渴XXXXX|人妻巨大乳挤奶水HD免费看|视频二区在线播放|九九热精品在线视频 | 玖玖久久|亚洲一级在线|久久久精品视频在线|亚洲精品伊人|欧美入口|不卡亚洲精品 | 91免费版|黄色在线亚洲|99国产精|黄色=a级|黄色视频一级毛片|清清草在线视频 | 成人一区在线视频|成人一区二区在线播放|新婚少妇毛茸茸的性|永久免费黄色大片|欧美精品一区在线观看|国产情侣久久久久=aⅤ免费 | 久久久久资源|亚洲精品中文字幕在线播放|免费大香伊蕉在人线国产|成人久久久久|精品99人妻|午夜成午夜成年片在线观看 | 久久网国产|国产精品久99|国产hsck在线亚洲|性导航唐人社区|久久精品国产亚洲=aV高清色欲|久久99精品久久久久久久夜夜爽 | #NAME?|打开免费观看视频在线|中文字幕人妻熟女人妻|欧美精品国产|久久老司机|国产日批 | 亚洲=aV香蕉一区区二区三区|国产乱子轮XXX农村|新婚少妇初尝禁果|香港三日本三级少妇三级99|漂亮的女老板国产三级|国产九九九 | 久久亚洲=aV成人无码软件|91亚洲网|成人在线看片|成人做爰www网站视频|粉嫩=av一区二区三区高清|免费一级片91 | 69视频在线观看|不卡的=av在线播放|羞羞色男人的天堂|蜜臀=av夜夜澡人人爽人人|一区二区三区黄|成年人在线免费网站 色一色成人网|久草在线影|精品视频在线观看99|国产香蕉尹人视频在线|亚洲=a∨好看=av高清在线观看|亚洲欧美日本在线 | 日操夜干|久久综合日|91无遮挡无码国产在线播放|亚洲视频免费网站|波多野结衣在线视频观看|亚洲国产欧美精品 | 国产在线短视频|最近免费中文字幕mv免费高清|四虎国产精品一区二区|毛片韩国|99re6这里只有精品视频在线观看|青春草在线 | 亚洲久久综合|久久伊甸园|青草国产超碰人人添人人碱|91资源在线播放|九九九免费观看视频|又黄又爽的免费视频 | 亚洲免费永久|91看片网址|亚洲=aV片毛片成人观看|国产精品视频内|在线=a=a=a|国产美女主播一级成人毛片 | 成人国产午夜在线观看|久久综合九色综合97欧美|99视频免费观看|久久久久久久国产精品毛片|久久99精品国产99久久|天堂成人国产精品一区 | 亚洲欧美日韩精品综久久久久久|99热这里只有精品99|国产成人综合精品|无码人妻一区二区三区免费N鬼逝|无码人妻=aⅤ一区二区三区麻豆|69xx×在线观看 | 伊人伊成久久人综合网|99久久精品无免国产免费|亚洲精选免费视频|自拍偷拍综合|欧美人禽交zozozo视频|久久久久女人精品毛片九一韩国 | 亚洲欧美日韩精品综久久久久久|99热这里只有精品99|国产成人综合精品|无码人妻一区二区三区免费N鬼逝|无码人妻=aⅤ一区二区三区麻豆|69xx×在线观看 | 一本久久宗合久久伊人|国产精品嫩草研究院|欧美日韩一本|娇小萝被两个黑人用半米长|国产精彩视频一区二区|成年人在线免费看视频 | 1000部禁又爽又黄的禁片免费|一区二区三区在线免费视频|国产精国产精品|中文字幕人妻系列人妻有码|在线日韩免费|男女wwww | 99视屏|亚洲精品日韩专区|欧美一级国产|久久丫不卡人妻内射中出|欧美日韩另类综合|亚洲色无码=a片中文字幕 | 大胆L少妇BBBBBB流水|欧美操日韩|麻豆视传媒精品=aV|大地资源色婷婷视频在线|亚洲影视一区二区三区|成年男女免费视频在线观看不卡 | 少妇精品|欧美大逼视频|一级做=a爱片特黄在线观看|日本乱码伦视频免费播放|亚洲精品在线观看=av|久久久久久久久久久久久久=av | 精品国产96亚洲一区二区三区|水蜜桃综合久久无码欧美|国产精品久久久久久久第一福利|成人无码免费视频在线观看网址|伊人wwwyiren22cn|极品尤物被啪到呻吟喷水 | 青青草免费在线视频播放|欧美国产一区二区三区|久久综合站|国产=aV视频一区二区|国产精品色在线免费|大片免免费观看视频播放器在线观看 | 狠狠色狠狠色狠狠五月|在线看片国产|午夜院线|国产一区二区三区免费观看视频|#NAME?|深夜男人你懂的六月婷婷天堂 | 国产成人18黄网站免费观看|日韩国产一区二|亚洲天堂自拍偷拍|性做爰片免费视频毛片中文|天天精品视频免费|黄色毛片免费 | 国产精品久久国产三级国不卡顿|2021国内精品久久久久精免费|天天舔天天插|2021国产在线观看不卡视频|久久久久国色=a∨免费看|伊人国产精品视频 | 韩国日本一区二区三区|91视频老司机|成人丁香社区|国产精选久久久久久|狠狠色噜噜狠狠狠狠888米奇|首页视频蝌蚪九色 |